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Abstract

The problem of learning a computational model from exam-
ples has been receiving growing attention. For the particu-
larly challenging problem of learning models of distributed
systems, existing results are restricted to models with a fixed
number of interacting processes. In this work we look for the
first time (to the best of our knowledge) at the problem of
learning a distributed system with an arbitrary number of pro-
cesses, assuming only that there exists a cutoff, i.e., a number
of processes that is sufficient to produce all observable be-
haviors. Specifically, we consider fine broadcast protocols,
these are broadcast protocols (BPs) with a finite cutoff and
no hidden states. We provide a learning algorithm that can in-
fer a correct BP from a sample that is consistent with a fine
BP, and a minimal equivalent BP if the sample is sufficiently
complete. On the negative side we show that (a) characteristic
sets of exponential size are unavoidable, (b) the consistency
problem for fine BPs is NP hard, and (c) that fine BPs are not
polynomially predictable.

1 Introduction
Learning computational models has a long history start-
ing with the seminal works of Gold (1967; 1978) and An-
gluin (1987). Questions regarding learning computational
models have raised a lot of interest both in the artificial intel-
ligence community and the verification community. (Peled
et al. (2002), Vaandrager (2017)). Many results regarding the
learnability of various computational models used in verifi-
cation have already been obtained (Beimel et al. 2000; Bol-
lig et al. 2013; Decker et al. 2014), Angluin et al. (2015),
Nitay et al. (2023), Roy et al. (2023).

Particularly challenging is learning of concurrent com-
putational models. Compared to most sequential models,
they offer another level of succinctness, and they usually
have no unique minimal model. Both of these aspects can
make learning significantly more difficult. Various results
regarding learning concurrent models have already been ob-
tained (Bollig et al. 2010), Esparza et al. (2011), Muscholl et
al. (2022). However, these results are limited to models with
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a fixed number of processes, and therefore cannot reliably
learn models for (distributed) protocols that are expected to
run correctly for any number of processes.

Broadcast protocols (BPs) are a powerful concurrent
computational model, allowing the synchronous communi-
cation of the sender of an action with an arbitrary number of
receivers (Emerson and Namjoshi 1998). The basic model
assumes that communication and processes are reliable, i.e.,
it does not consider communication failures or faulty pro-
cesses. BPs have mainly been studied in the context of pa-
rameterized verification, i.e., proving functional correctness
according to a formal specification, for all systems where an
arbitrary number of processes execute a given protocol.

The challenge in reasoning about parameterized systems
such as BPs is that a parameterized system concisely repre-
sents an infinite family of systems: for each natural number
n it includes the system where n indistinguishable processes
interact. The system is correct only if it satisfies the speci-
fication for any number n of processes interacting. In the
context of verification, a variety of approaches has been in-
vestigated to overcome this challenge.

Some of these approaches are based on the notion of cut-
off, i.e., a number c of processes such that a given prop-
erty holds for any instance of the system with n ≥ c pro-
cesses if and only if it holds for the cutoff system, where
the cutoff system is a system with exactly c processes in-
teracting. In the literature, many results exist that provide
cutoffs for certain classes of properties in a given compu-
tational model (Emerson and Namjoshi 2003; Emerson and
Kahlon 2000), Außerlechner et al. (2016). Moreover, cutoffs
also enable the synthesis of implementations for parameter-
ized systems from formal specifications (Jacobs and Bloem
2014), a problem closely related to learning.

In this paper, we develop a learning approach for BPs.
Given the expressiveness of BPs and the complexity of the
general problem, we make some assumptions to keep the
problem manageable. In particular, we assume (1) that the
BP under consideration has no hidden states, i.e., every state
has at least one broadcast sending action by which it can be
recognized; and (2) that there exists a cutoff, i.e., a number c
such that the language (of finite words over actions) derived
by c processes is the same as the language derived by any
number greater than c. We call such BPs fine, and note that
many BPs studied in the literature are fine.
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Moreover, the restriction to fine BPs does not overly sim-
plify the problem, as even under this assumption we obtain
negative results for some basic learning problems. We note
that not all BPs have a cutoff (whether or not they have hid-
den states), and that when a cutoff exists the derived lan-
guage is regular. The fact that the derived language is regu-
lar also holds in previous works on learning concurrent mod-
els (communicating automata (Bollig et al. 2010), workflow
Petri nets (Esparza et al. (2011)), and negotiation protocols
(Muscholl et al. (2022))) merely since a finite number of es-
sentially finite state machines is in consideration.1 We em-
phasize that this does not reduce the problem to learning a
regular language, since the aim is to obtain the concurrent
representation, which we show to be much more succinct
than a DFA for the language. Moreover, the problem we con-
sider goes way beyond what has been considered in previous
works in the sense that our approach works if there exists a
cutoff, but it does not require that the cutoff is known a pri-
ori, which is equivalent to the assumption of a (given) fixed
number of processes in existing approaches.

We focus mainly on passive learning paradigms (de la
Higuera 2010). Specifically, we consider the following prob-
lems: 1. Inference — given a sample consistent with a BP,
return a BP that is consistent with the sample, 2. Consis-
tency — whether there exists a BP with at most k states that
agrees with a given sample, 3. Polynomial data — whether
characteristic sets are of polynomial size, and 4. Polynomial
Predictability — whether a learner can correctly classify an
unknown word with high probability after asking polynomi-
ally many membership (MQ) and draw queries(DR).

We prove a few properties of fine BPs relevant to learning
in §3. In §4, we provide an inference algorithm that, given a
sample of words that are consistent with a fine BP, infers a
correct BP. In §5, we show that the inference algorithm pro-
duces a minimal equivalent BP when the sample subsumes
a characteristic set, and that characteristic sets of exponen-
tial size are unavoidable. In §6, we show that consistency is
NP-hard for the class of fine BPs. In §7 we show that fine
BPs are not polynomially predictable. For complete proofs
see the extended version (Fisman, Izsak, and Jacobs 2023).

2 Preliminaries
Broadcast Protocols
In the following we define broadcast protocols as introduced
by Emerson and Namjoshi (1998) and studied in the seminal
paper by Esparza et al. (1999). Broadcast protocols are one
of the most powerful computational models for which some
parameterized verification problems are still decidable, and
are strictly more powerful than other standard communica-
tion primitives such as pairwise rendezvous or disjunctive
guards (Emerson and Kahlon 2003).

Broadcast Protocols (BPs) A broadcast protocol B =
(S, s0, L,R) consists of a finite set of states S with an ini-
tial state s0 ∈ S, a set of labels L and a transition relation

1The language of a BP in general need not be regular (Finkel
and Schnoebelen 2001; Geeraerts, Raskin, and Begin 2007) and
this is true also with the restriction to no hidden states.

s0 s1

Ma =

[
1 1
0 0

]
va =

[
1
0

]
v′
a =

[
0
1

]

Mb =

[
0 0
1 1

]
vb =

[
0
1

]
v′
b =

[
0
1

]a!!, b??

a??

b!!, b??a??

Figure 1: A simple BP (left) and its algebraic representation.

R ⊆ S × L × S, where L = {a!!, a?? | a ∈ A} for some
set of actions A. A transition labeled with a!! is a broad-
cast sending transition, and a transition labeled with a?? is
a broadcast receiving transition, also called a response.2 For
each action a ∈ A, there must be exactly one outgoing re-
sponse from every state.

Given a BP B = (S, s0, L,R) we consider systems Bn,
composed of n identical processes that execute B. Let [n]
denote the set {0, 1, . . . , n}. A configuration ofBn is a func-
tion q : S → [n], assigning to each state a number of pro-
cesses. The initial configuration q0 is the configuration with
q0(s0) = n and q0(s) = 0 for all s ̸= s0. In a global transi-
tion, all processes make a move: One process takes a send-
ing transition (labeled a!!), modeling that it broadcasts the
value a to all the others processes in the system. Simultane-
ously, all of the other processes take the receiving transition
(labeled a??) from their current state.3

Example 2.1. Fig.1 (left) depicts a simple BP B. In the
initial configuration of the system B9 we have 9 processes
in s0. If a process broadcasts a, it moves to s1 via the transi-
tion label a!!. The other processes respond following the a??
transition from their current state, hence they remain in s0.
Now we are in a configuration q′ with one process in s1 and
8 in s0. If from q′ another process broadcasts a, it moves
from s0 to s1. The processes in s0 stay there (following a??
from s0), and the process in s1 moves back to s0 (following
a?? from s1). Thus, we return to q′. If from q′ the process in
s1 broadcasts b then it stays in s1 (following b!!), while all
other processes move to s1 via b?? i.e., all will be in s1.

Following Esparza et al. (1999), we make the standard as-
sumption that for each action a, there is a unique state sa
with an outgoing sending transition on a!!. A state s in a
broadcast protocol is said to be hidden if it has no outgo-
ing sending transition. In this paper we consider broadcast
protocols with no hidden states. Note that the additional as-
sumption of no hidden states is modest, since many exam-
ples from the literature satisfy it (e.g., the MESI protocol
in Esparza et al. (1999) or the last-in first-served protocol in
Delzanno et al. (1999)), and every protocol that does not sat-
isfy this restriction can easily be modified to satisfy it with-
out changing its functionality.

Semantics of Bn We can represent transitions of a system
Bn algebraically. Assuming some ordering s0, s1, ...s|S|−1

on the set of states S, we can identify configurations of Bn

with vectors from [n]|S|, also called state-vectors. We use

2Some models of BPs also consider rendezvous transitions,
usually labeled with a! and a?, but these can be simulated by broad-
cast transitions with a quadratic blowup in the number of states.

3We give a formal semantics of Bn below.
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q[i] to denote the entry in position i of a state-vector q. For
example, let uj be the unit vector with uj [j]=1 and uj [i]=0
for all i ̸= j. Then the configuration where all n processes
are in s0 is the vector n ·u0. If q is a state-vector with q[i] ≥
1 we say that i is lit in q. If state si has an outgoing sending
transition on action a we say that a is enabled in si; if i is lit
in q we also say that a is enabled in q.

With each action a we can associate (1) two unit-vectors
va = ui for the origin and v′a = uj for the destination, fol-
lowing its sending transition (si, a!!, sj), and (2) a broadcast
matrix Ma, which is an |S|× |S| matrix with Ma(m, k) = 1
if there is a response (sk, a??, sm) ∈ R, and Ma(m, k) = 0
otherwise. Every column of such a matrix is a unit vector.

Then the transitions T of Bn are defined as follows: there
is a transition between configurations q and q’ on action a in
Bn, denoted (q, a, q′) ∈ T , iff there exists (si, a!!, sj) ∈ R
with q[i] ≥ 1 and: q′ = Ma · (q − va) + v′a.

To see this, note that the state-vector q − va corresponds
to the sending process leaving the state si. The state-vector
Ma ·(q−va) describes the situation after the other processes
take the responses on a. Finally, q′ is the resulting state-
vector after the sending process arrives at its target location.
Example 2.2. Consider again the BP in Fig.1, depicted with
the broadcast matrices for the two actions Ma and Mb, and
the associated origin and destination vectors va, v′a, vb, v′

b.
In configuration q = [ 22 ], a is enabled (s0 is lit). Computing
the effect of a, we first get q−va = [ 12 ], then Ma ·[ 12 ] = [ 30 ],
and finally, q′ = [ 30 ] + v′a = [ 31 ].

An execution of Bn is a finite sequence e = q0, a1,
q1, a2, . . ., am, qm such that (qi, ai+1, qi+1) ∈ T for every
i ∈ [m−1]. We say that e is based on the sequence of ac-
tions a1, . . . , am and that Bn(a1 . . . am) = qm. We say that
a word w ∈ A∗ is feasible in Bn if there is an execution of
Bn based on w. The language of Bn, denoted L(Bn), is the
set of all words that are feasible in Bn, and the language of
B, denoted L(B), is the union of L(Bn) over all n ∈ N.

Let B1 and B2 be two BPs. We say that B1 and B2 are
equivalent iffL(B1)=L(B2). A BPB is said to have a cutoff
k ∈ N if for any k′ > k it holds that L(Bk) = L(Bk′

). A
BP with no hidden states is termed fine if it has a cutoff. We
measure the size of a BP by its number of states. Thus, a BP
is termed minimal if there is no equivalent BP with fewer
states. Note that unlike the case of DFAs, there is no unique
minimal fine BP, as shown by the following example.
Example 2.3. Fig.2 shows two BPs B1 and B2. Note that
L(B1

1) = a∗, since with a single process, a is the only pos-
sible action from q0, and we arrive in q0 after executing it.
With 2 processes, after executing a we arrive in state-vector
[ 11 ], and we can execute either a or b, and each of them
brings us to [ 11 ] again. Therefore, L(B2

1) = a(a∪b)∗. More-
over, adding more processes does not change the language,
i.e., L(Bn

1 ) = L(B2
1) for all n. Hence L(B1) = L(B2

1)
and the cutoff of B1 is 2. Similarly, we can show that
L(B2) = a(a ∪ b)∗ and the cutoff of B2 is 2. Note that
B1 and B2 are not isomorphic, but they are equivalent.

We note that the aforementioned examples from the liter-
ature (Esparza et al. (1999) and Delzanno et al. (1999)) also
have a cutoff, and thus are fine BPs.

0 1B1 : 0 1B2 :
a??, b??

b!!

a!! a??, b??

a??

a!!, b?? b!!, a??, b??

Figure 2: Two non-isomorphic equivalent fine BPs

Learning Problems
A sample for a BPB is a set S of triples inA∗×N×B where
B = {T, F}. A triple (w, n, T) (resp. (w, n, F)) is consistent
with B if w is feasible (resp. infeasible) in Bn. A sample
is consistent with B if all triples in it are consistent with B.
The size of S is defined as the sum of length of words in it.

We consider the following problems related to learning a
class C of computational models, phrased for BPs.

Problem 2.1 (Inference). Devise an algorithm that given
a sample S that is consistent with some BP in C returns a
BP B ∈ C that is consistent with S . We refer to such an
algorithm as an inference algorithm.

Obviously one would prefer the returned BP to be mini-
mal or sufficiently small. Phrased as a decision problem this
is the consistency problem.

Problem 2.2 (Consistency). Given a sample S and k ∈ N
determine whether there exists a BP B ∈ C consistent with
S with at most k states.

The consistency problem is NP-hard even for DFAs (Gold
1978). Thus, inference algorithms are often based on SAT or
SMT solvers In §4 we provide such an inference algorithm
for fine BPs. Note that in many cases it is possible to devise a
trivial inference algorithm (e.g., for DFAs the prefix-tree au-
tomaton) that is correct on the sample but makes no general-
ization and does not attempt to minimize the returned result.
We show in §5 that if the sample is sufficiently complete
(subsumes a characteristic set), the inference algorithm we
provide in fact returns the minimal BP that agrees with the
sample. One may thus ask how large should a characteristic
set be. We show that, unfortunately, it can be of size expo-
nential in the number of states of the BP.

Problem 2.3 (Polynomial data). Does there exist an infer-
ence algorithm A such that one can associate with every BP
B ∈ C a sample SB of size polynomial in B so that A cor-
rectly infers L(B) from SB or any sample subsuming it.

The last problem we consider is in the active learning
paradigm. Its definition is quite long and deferred to §7.

Problem 2.4 (Polynomial Predictability). Can a learner
correctly classify an unknown word with high probabil-
ity after asking polynomially many membership and draw
queries.

3 Properties of Broadcast Protocols
Below we establish some properties regarding broadcast
protocols that will be useful in devising the learning algo-
rithm.

It is not hard to see that the set of feasible words L(B)
of a given BP is prefix-closed. That is, if uv is feasible for
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u, v ∈ A∗ then u is feasible as well. Additionally, if w ∈ A∗

is feasible in Bk then w is feasible in Bℓ for all ℓ > k.
Lemma 3.1 (Prefix-closedness and monotonicity). If B is a
BP then L(B) is prefix-closed. Moreover, L(Bk) ⊆ L(Bℓ)
for all ℓ > k.

The following lemma asserts that if wa is feasible with n
processes but not with m < n, while w is feasible with m
processes (for w ∈ A∗ and a ∈ A) then wa must be feasible
with m + 1 processes. Intuitively this is since m processes
are enough to execute all actions in w, and therefore any ad-
ditional processes will take only receiving transitions along
w, and will all arrive in the same local state. Thus, if a is not
enabled after w with m + 1 processes, then the additional
process did not lit the state sa enabling a, and the same is
true if we add any bigger number of processes.
Lemma 3.2 (Step by step progress). Let w ∈ A∗, a ∈ A,
and m < n. If w ∈ L(Bm) and wa /∈ L(Bm) yet wa ∈
L(Bn), then wa ∈ L(Bm+1).

Recall that fine BPs have no canonical minimal represen-
tation, in the sense that, as shown in Ex.2.3, there could be
two non-isomorphic BPs for the same language. The lack
of a canonical minimal representation often makes it diffi-
cult to achieve a learning algorithm. The following impor-
tant lemma asserts, that while two minimal fine BPs may be
non-isomorphic there is a tight correlation between them.

Since every action is enabled by a unique state, and every
state enables at least one action, in a minimal fine BP the set
A is partitioned between states, and if there is a state s1 in
B1 whose set of enabled actions is A′ = {ai1 , ai2 , . . . , aik}
then there should be a state s2 in B2 for which the set of
enabled actions is exactly A′. So we can define such a map-
ping between the states of two minimal fine BPs, and it must
be that on every word w if pw and qw are the state-vectors
B1 and B2 reach after reading w, resp., then if state s1 is
lit in pw then the corresponding state s2 (that agrees on the
set of enabled actions) is lit in qw. Moreover, the fact that
L(B1) = L(B2) guarantees that L(Bm

1 ) = L(Bm
2 ) for any

m ∈ N. This bundle of claims can be proven together by in-
duction first on the number of processes m, and second the
length of the word w. In the following we use fact(s) = A′

if A′ is the set of actions enabled in s.
Lemma 3.3 (Relation between minimal fine equivalent
BPs). Let B1 and B2 be minimal fine BPs with states S1

and S2 such that L(B1)=L(B2). Then for every m ∈ N it
holds that L(Bm

1 )=L(Bm
2 ) and there exists a bijection h :

S1 → S2 satisfying that fact(s)=fact(h(s)) for any s∈S1;
and for any w ∈ A∗ ifBm

1 (w) = pw andBm
2 (w) = qw then

pw[i] is lit if and only if qw[h(i)] is lit, for every state i.

4 Inferring a BP from a Sample
Let S be a sample. The inference algorithm I we devise con-
structs a BP BS that agrees with S .

Let AS be the set of actions that appear in S in at least
one feasible word. In order to return a BPBS with no hidden
states, we allow BS to have a set of actions A ⊇ AS .4 We

4Note that in §5 we show that it is enough to consider A = AS
if S is sufficiently complete.

use S for the set of states of BS , and s0 for its initial state.
We construct a set of constraints that define the BP BS .

More precisely, we construct a set of constraints ΨS regard-
ing the behavior of three partial functions f st : A → S,
f !! :A→S, and f??

a :S→S for every a∈A so that any val-
uation of these functions that satisfies ΨS implement a BP
consistent with the sample. Formally, we say that functions
f st, f !!, {f??

a | a ∈ A} implement a BP B = (S, s0, L,R) if
for every (si, a!!, sj) ∈ R we have f st(a) = si, f !!(a) = sj
and for every (si, a??, sj) ∈ R we have f??

a (si) = sj . We
also use fact(s) = A′ if A′ = {a ∈ A | f st(a) = s}.

We turn to introduce some terminology regarding the
sample. Let Pi be the set of words {w : (w, i, T) ∈ S}, and
let Ni be {w : (w, i, F)∈S}. Note that by Lem.3.1 it follows
that if w∈Pi then w is feasible in Bj for every j≥ i. Sim-
ilarly, if w ∈Ni, then w is infeasible in Bj for every j ≤ i.
We define N (resp. P) as the union of all Ni’s (resp. Pi’s).

We define a relation between actions a, b ∈ AS as fol-
lows. We say that a#S b if there exist a word w ∈ A∗

S and
naturals n′ ≥ n such that (wa, n, T) ∈ S and (wb, n′, F) ∈
S or vice versa (switching the roles of a and b). Following
Lem.3.3, a#S b means that the sample S has information
contradicting that a and b are enabled in the same state.
1. Our first constraints are therefore that for every a, b ∈ A

such that a#S b it holds that f st(a) ̸= f st(b).
2. Since we identify states by the set of actions they enable

and we assume there are no hidden states, we define the
set of states S = {f st(a) : a ∈ A} as the set of terms
f st(a). This definition guarantees that no states are hid-
den. Moreover, we designate one of the states, that we
term s0, as the initial state: ∃s ∈ S : s = s0.

3. The rest of the constraints are gathered by scanning the
words first by length. For every word of length one, i.e.
action a, if au ∈ Pi for some i and some u ∈ A∗ then we
add f st(a) = s0, and if a ∈ Ni then we add f st(a) ̸= s0.

4. Next, we scan inductively for every word w ∈ P for the
minimal i ≥ 1 such that w ∈ Pi and for every w ∈ N
for the maximal i ≥ 1 such that w ∈ Ni.
In the base case i=1 we have w ∈ P1 ∪ N1. Let w =
a1a2. . .am. We definem+1 variables p0, p1, . . . pm. The
variable pk indicates the state the process reaches after
the system reads a1 . . . ak, and p0 should be s0.
If w ∈ P1, we add the constraint ψw,1 defined as

(p0 = s0) ∧
∧

1≤ℓ≤m

(
pℓ−1 = f st(aℓ) ∧ pℓ = f !!(aℓ)

)
This requires that the next letter aℓ is enabled in the state
the process reached after a1a2 . . . aℓ−1 was executed.
If w ∈ N1 we add the following constraint∨

0≤ℓ<m

(
ψw[..ℓ],1 ∧ pℓ ̸= f st(aℓ+1)

)
where w[..ℓ] denotes the ℓ’th prefix of w, namely
a1a2 . . . aℓ, and we let ψϵ,1 = T. This requires that at
least one of the letters in the word is not enabled in the
state the process reached, implying the entire word is in-
feasible with one process.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

12019



5. For the induction step i > 1, let w ∈ Pi ∪ Ni and as-
sume w = a1a2 . . . am. We define i(m + 1) variables
p1,0, p2,0, . . . pi,m. The variable pj,k indicates the state
the j-th process reaches after the system reads a1 . . . ak.
Accordingly, we set pj,0 = s0 for every 1 ≤ j ≤ i. The
state of the processes after reading the next letter, al+1,
depends on their state after reading al.
Let w∈Pi, we add the constraint ψw,i defined as follows.

ψw,i =
∧

1≤ℓ≤m

 ∨
1≤j≤i

((
pj,ℓ−1 = f st(aℓ)

)
∧ φj,ℓ

)
where

φj,ℓ =


pj,ℓ = f !!(aℓ) ∧∧

1 ≤ j′ ≤ i

j′ ̸= j

pj′,ℓ = f??
aℓ
(pj′,ℓ−1)


Intuitively, ψw,i requires that for every letter aℓ of w one
of the processes, call it j, reached a state in which aℓ
is enabled. The formula φj,ℓ states that the j-th process
took the sending transition on aℓ and the rest of the pro-
cesses took the respective receiving transition.
Let w ∈ Ni. We then add the following requirement

∨
0≤ℓ<m

ψw[..ℓ],i ∧
∧

1≤j≤i

(
pj,ℓ ̸= f st(aℓ+1)

)
where we let ψϵ,i = T for every i.
Intuitively, if w is infeasible with i processes, then there
exists a (possibly empty) prefix w[..ℓ] which is feasible
with i processes, therefore ψw[..ℓ],i holds, while w[..ℓ+1]
is infeasible, meaning none of the i processes is in a state
where aℓ+1 is enabled.

Theorem 4.1. Let S be a sample that is consistent with some
fine BP. Let BS be a BP that satisfies the prescribed con-
straints ΨS . Then BS is a BP consistent with S .

Proof. We prove that if w∈Pi (resp. w∈Ni) then w is feasi-
ble (resp. infeasible) in Bi

S , by induction first on the length
of w and then on i. For w of length 1, this holds by the con-
straints in item (3). Let w=a1a2. . .an∈Pi. If i=1 then this
holds by induction on w thanks to constraint (4). Next we
consider words of the form w that are in Pi ∪Ni. If w ∈ Pi

is already in Pj for j < i then by the induction hypothesis it
is already feasible for j processes in the constructed BP, and
by Lem.3.1, it is also feasible with i processes. Otherwise,
w ∈ Pi \

⋃
j<i Pj . In this case, constraint (5) makes sure

that every prefix ofw is feasible with i processes, and requir-
ing that for the next letter aℓ one of the i processes reached
the state enabling aℓ after reading the prefix up to aℓ−1.

If w∈Ni then w is infeasible with i processes. In this
case, there exists a letter aℓ for 1 ≤ ℓ ≤m such that while
w[..ℓ−1] is feasible, aℓ is not enabled in any of the states
that the i processes reach after reading (the possibly empty)
prefix w[..ℓ−1]. This is exactly what constraint (5) stipu-
lates, which is added for i or some j > i. In the latter case,
Lem.3.1 implies that w is infeasible in Bi

S .

Finally, note that our constraints are in the theory of equal-
ity with uninterpreted functions (EUF), and are therefore de-
cidable.5 Thus, an algorithm for inferring fine BPs can be
implemented using an SMT solver.

Corollary 4.2. I is an inference algorithm for fine BPs.

5 Returning a Minimal BP
In this section we show that when the sample is sufficiently
complete we can guarantee that we return a minimal equiv-
alent BP, and not just a BP that agrees with the sample. We
thus first show that every fine BP B can be associated with a
sample SB so that there exists an inference algorithm A that
when applied to any sample S that subsumes SB and is con-
sistent with B, returns a minimal fine BP that is equivalent
to B. We refer to such a sample as a characteristic set (CS).

In the following, we first describe a procedure G that gen-
erates a sample SB from a fine BPB, and then we prove that
an inference algorithm A can correctly infer a minimal BP
B′ equivalent to B from any sample subsuming SB .

Generating a Characteristic Set
The CS generation algorithm G builds a sequence of trees Ti
starting with i = 0 and incrementing i by one until Ti+1 =
Ti. The edges of the tree are actions. The name of a node
is taken to be the unique sequence of actions w that leads
to it. Thus, the root is named ε and a child of a node w ∈
A∗ is named wa for some a ∈ A. A node w ∈ A∗ in tree
Ti is annotated with Bi(w) = pw,i, i.e. the state-vector Bi

reaches when reading w, if w is feasible in Bi, and with
the special symbol ⊥ otherwise. We call a node in the tree
positive if it is annotated with a state-vector, and negative
otherwise. All nodes are either leaves or have exactly |A|
children. Negative nodes are always leaves.

The tree T0 consists of only a root ε and is annotated with
the state-vector of all zeros. The tree Ti+1 is constructed
from the tree Ti by first re-annotating all its nodes: The an-
notation of a positive pw,i is replaced by pw,i+1, a negative
node w in Ti may become positive in Ti+1 (if w is feasible
with i+1 processes) and will be annotated accordingly with
pw,i+1. Then we check, from every positive node, whether
further exploration is needed. A positive node will be de-
clared a leaf if it is of the form va and it has an ancestor
u, a prefix of v, for which pu,i+1 = pv,i+1. Otherwise its
|A| children are constructed. That is, once we reach a node
whose state-vector is the same as one of its ancestors, we de-
velop its children, but the children are not developed further.

The entire process terminates when Ti+1 = Ti.6 Note
that given that the BP has a cutoff, such an i must exist.
We use T for the last tree constructed, namely Ti+1. The
sample is then produced as follows. For n ∈ [i + 1], let
Pn = {(u, n, T) | n is the minimal for which u is positive in
Tn}, Nn = {(u, n, F) | n is the maximal for which u is neg-
ative in Tn}. Then the sample is SB =

⋃i+1
n=1 (Pn ∪Nn).

5While constraint (2) depends on the unknown set A, we can
bound the size of A, e.g., by the size of the prefix tree of S.

6We say Ti+1 = Ti if they agree on the tree structure and the
edge labels (regardless of the nodes’ annotations).
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Proving That G Generates Characteristic Sets
We first note that for any reachable state s of the original BP,
there exists at least one node v in the tree where s is lit (i.e.
the entry for s in the state-vector annotating the node is lit).
The following lemma strengthens this statement further.
Lemma 5.1. Let p be a state-vector that is reachable inBn.
Then for every shortest word w that reaches p in Bn there
exists a node w in Tn such that pw = p.

When the sample S subsumes the set SB then #S in-
duces an equivalence relation between the actions:
Lemma 5.2. For two actions a and b define a ∼S b iff it is
not the case that a#S b. If S subsumes SB then ∼S is an
equivalence relation.
Theorem 5.3. Let B be a fine minimal BP, and let SB be
the sample generated for it as above. There is an inference
algorithm A such that if B′ is the result of A when applied
to any set subsuming SB and consistent with B then B′ is
minimal and L(B′) = L(B).

Proof. The inference algorithm A we use to prove this claim
runs in two steps. First it runs a variation I′ of the infer-
ence algorithm I presented in §4 that turns the constraint (1)
into an iff constraint. I.e. adding that f st(a) = f st(b) un-
less a#S b. If running I′ returns that there is no satisfying
assignment then it runs I. In both cases Thm. 4.1 guaran-
tees that the returned BP is consistent with the given sample.
Therefore A is an inference algorithm.

Next we claim that if the given sample subsumes SB then
B′, the resulting BP, is minimal. This holds since Lem.5.2
ensures that #S defines the desired equivalence ∼S be-
tween actions, and the revised constraint (1) guarantees that
actions are not enabled from the same state if and only if the
sample separates them. (Note that any word consistent with
the BP cannot separate actions a and b if they are enabled
from the same state.) Hence I′ will not return that there is
no satisfying assignment.

Next we note that by Lem.5.1 for every state-vector p
that is reachable in Bm and for every shortest word w that
reaches p in Bm there exists a node w in Tm such that
pw = p. If w = a1a2 . . . an then for each 1 ≤ i ≤ n one
process took the sending transition ai!! and the rest of the
processes responded with ai??. Constraint (5) makes sure
the assignment to f st, f !! and f?? respect all the possible
options that enabled this, making sure that for every two op-
tions for enabling w that result in state-vectors p1 and p2,
resp., the same states are lit in both p1 and p2.

Hence, for any BP B′ that adheres to the constraints there
exists a mapping h between the states ofB andB′ satisfying
the requirements of Lem.3.3. Thus, L(B)=L(B′).

Regarding the problem of polynomial data we show that
there exist fine BPs for which there is no CS of polynomial
size. The proof constructs a family of BPs of size quadratic
in n for which there exists an action a⊤ such that the length
of the shortest word containing a⊤ is exponential in n. Thus,
any CS has to include at least one such long word.
Theorem 5.4. There exists a family of fine BPs with no char-
acteristic set of polynomial size.

I ι D q′q′′

⊤⊥C X

i!!

i?? $??$??

Σ!!

$!!, $??

x!! ⊥!! ⊤!!

⊤??

⊥??

$??

Figure 3: Reduction of DFA-consistency to BP-consistency.

The same family used in the proof of Thm.5.4 also shows
that fine BPs can be exponentially smaller than the minimal
DFA accepting the same language. This is since in a DFA
for every state q the length of the shortest word reaching q is
bounded by the number of states in the DFA.

Corollary 5.5. There exists a family of fine BPs for which
the corresponding minimal DFA is of exponential size.

6 Consistency Is NP-Hard for Fine BPs
We show below that consistency is NP-hard even for fine
BPs. We note that hardness is expected since DFA consis-
tency is NP-hard (Gold 1978), but it does not directly follow
from hardness of DFA consistency. This is since a DFA is
not a special case of a fine BP. However, a fine BP can sim-
ulate a DFA, in a manner prescribed in Lem.6.1.

Fig.3 provides a schematic illustration of the simulation.
The states in the rectangle are the original states of the DFA,
and ι is the initial state of the DFA. All responses that are not
shown in the figure are self-loops, we omit them to avoid
clutter. In addition, to make the BP fine, we need to allow
each state q to enable some action, call it q. The simulation
would like to ignore these actions, i.e. consider the projec-
tion of the words to words without these actions. Formally,
let Γ,Γ′ be alphabets such that Γ′ ⊇ Γ. Let w′ be a word
over Γ′. We use πΓ(w′) for the word obtained from w′ by
removing letters in Γ′ \ Γ. If B is a BP over A′, such that
A′ ⊇ A, we refer to the words in {πA(w) | w ∈ L(B)}, ab-
breviated πA(L(B)), as the A-feasible words of B. Lem.6.1
states in which manner the BP simulates the DFA.

Lemma 6.1. Let L be a non-trivial regular language over
Σ, and assume n is the number of states in the minimal DFA
for L.7 Let A = Σ ∪ {i, $,⊤,⊥, x}.
1. There exists a fine BP B over actions A′ such that A′ ⊇
A satisfying that πA(L(B1)) = {i} and πA(L(Bn)) ⊆
i(Σ)∗$x∗(⊤∗ ∪ ⊥∗) for every n ≥ 2.

2. In addition, for every w ∈ Σ∗:
• w ∈ L⇔ (iw$⊤, 2) is feasible in B.
• w /∈ L⇔ (iw$⊥, 2) is feasible in B.

3. Moreover, for every B satisfying the above it holds that
B has at least n+ 5 states.

Proof sketch. In order to keep the number of processes in
the DFA part exactly one, the i action from the initial state
of the BP (state I) sends one process to ι and the rest to state
C. To allow every letter σ ∈ Σ to be taken from every state

7A language is non-trivial if it is not the empty set or Σ∗.
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of the DFA, the state C of the BP enables all letters in Σ, and
the original (q, σ, q′) transitions of the DFA are transformed
into responses (q, σ??, q′). Next, to deal with the fact that the
language of a DFA is defined by the set of words that reach
an accepting state whereas the language of a BP is the set
feasible words, we introduce the letters $, ⊤ and ⊥. Upon $
the single process in one of the DFA states moves into either
state ⊥ or state ⊤ depending on whether it was in an accept-
ing state or a rejecting state; and all processes in states C
move to state X where they wait to follow the respective ⊥
or ⊤. Now only {x,⊤} or {x,⊥} are enabled. An x!! tran-
sition would not change this situation whereas a ⊤ (resp. ⊥)
transition will ensure only ⊤ (resp. ⊥) can be taken hence-
forth. The complete proof (in the extended version) shows
the three requirements of the lemma are satisfied.

Theorem 6.2. BP consistency is NP-hard.

Proof Sketch. The proof is by reduction from DFA consis-
tency which is NP-hard by (Gold 1978). Given an input to
DFA-consistency, namely a sample S and k∈N, we produce
a sample S ′ and k′=k+5 as an input to BP-consistency so
the relation between the minimal BP consistent with S ′ and
the minimal DFA consistent with S is as stated in Lem.6.1.

The sample S ′ consists of various triples ensuring a BP
consistent with S ′ has the structure given in Fig.3. For in-
stance, (i, 1, T) and (ii, 2, F) enforce that i is enabled in the
initial state but is not a self-loop. A pair (w, T) (resp. (w, F))
in S is altered to triple (iw$⊤⊤, 2, T) (resp. (iw$⊥⊥, 2, T)
in S ′, making sure that words accepted (resp. rejected) by
the DFA create respective feasible words ending with ⊤’s
(resp. ⊥’s). Each such pair carries some additional triples
added to S ′ to continue enforcing the structure of Fig.3.

See the extended version for an alternative proof via a di-
rect reduction from all-eq-sat, inspired by Lingg et al (2024).

Note that given a BP B and a pair (w, n) ∈ A∗ × N it is
possible to check in polynomial time whether w is feasible
inBn by developing the state-vector n ·u0 along the word w
inB. Consequently, and since a BP withm states over set of
actions A can be described in size polynomial in m and |A|,
if m is given in unary then BP-consistency is NP-complete.

7 BPs Are Not Polynomially Predictable
Here we show that fine BPs are not polynomially predictable
with membership queries. The learning paradigm of polyno-
mial predictability of a class C can be explained as follows.
The learner has access to an oracle answering membership
queries (MQ) with regard to the target language C ∈ C or
draw queries (DR) that can be implemented using MQ. A
membership query receives a word w as input and answers
whether w is or is not in C. A draw query receives no inputs
and returns a pair (w, b) where w is a word that is randomly
chosen according to some probability distribution D and b
is MQ(w). We assume some bound ℓ on the length of the
relevant examples, so that D is a probability distribution on
the set of relevant words. We assume the learner knows ℓ
but D is unknown to her. At some point, the learner is ex-
pected to ask for a word whose membership it needs to pre-
dict, in which case it is handed a word w (drawn randomly

H1 G1

H2 G2

◦ ◦ ◦

Hk Gk

ι1

ι2

ιk

D1

D2

Dk

q′1

q′2q′′2

q′kq′′k

⊥

S C X

h1!! s??

h1??

h2!! s??

h2??

hk−1??
hk!! s??

hk??

$??

$??

$??

$??

⊥!!⊥??

s!!, s??
Σ!!

$!!, $??
x!!

$??

$??

$??

$??

Figure 4: A BP simulating intersection of k DFAs.

according to the same distribution D) and it should then an-
swer whether w is or is not in C. We say that the class C is
polynomially predictable with membership queries, if given
a bound s on the size of the target language, the mentioned
bound ℓ on the length of relevant examples, and an accu-
racy parameter ε between 0 and 1, there exists a learner that
will classify the word to predict correctly with probability at
least (1 − ε), after asking a number of queries that is poly-
nomial in the size of the minimal BP of the target language.
We show that under plausible cryptography assumptions fine
BPs (thus BPs in general) are not polynomially predictable.

Theorem 7.1. Assuming the intractability of any of the fol-
lowing three problems: testing quadratic residues modulo a
composite, inverting RSA encryption, or factoring Blum in-
tegers, fine BPs are not polynomially predictable with MQ.

Proof Sketch. The proof is via a reduction from the class D
of intersection of DFAs, for which Angluin and Kharitonov
have shown that D is not polynomially predictable under the
same assumptions (Angluin and Kharitonov 1995). We show
that given a predictor B for fine BPs we can construct a
predictor D for the intersection of DFAs as follows. Given
a set D1, D2, . . . , Dk of DFAs, we can construct a BP B as
shown in Fig.4 such that B simulates the run of the k DFAs
together. As in the proof of Lem.6.1 we can send one process
to simulate any of the DFAs. Here we need k processes to
send a process to the initial state of each of the DFAs, and an
additional process to enable all letters in Σ. Thus, the cutoff
is k+1. The BP detects whether a given word w is accepted
by all the DFAs by checking whether uw$⊥ is infeasible in
B where u is some initialization sequence that is required to
send the processes to the initial states of the DFAs.

8 Conclusion
We investigated the learnability of the class of fine broadcast
protocols. To the best of our knowledge, this is the first work
on learning concurrent models that does not assume a fixed
number of processes interact. On the positive, we showed
a passive learning algorithm that can infer a BP consistent
with a given sample, and even return a minimal equivalent
BP if the sample is sufficiently complete. On the negative,
we showed that the consistency problem for fine BPs is NP-
hard; characteristic sets may be inevitably of exponential
size; and the class is not polynomially predictable.
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